For the last few decades, the accepted best practice has been to keep operational and analytic systems separate, in order to prevent analytic workloads from disrupting operational processing. HTAP (Hybrid Transaction / Analytical Processing) was coined in early 2014 by Gartner to describe a new generation of data platforms that can perform both online transaction processing (OLTP) and online analytical processing (OLAP) without requiring data duplication. In 2016, we will see converged approaches become mainstream as leading companies reap the benefits of combining production workloads with analytics to adjust quickly to changing customer preferences, competitive pressures, and business conditions. This convergence speeds the “data to action” cycle for organisations and removes the time lag between analytics and business impact.
2. The Pendulum Swings from Centralised to Distributed
Tech cycles have swung back and forth from centralised to distributed workloads. Big data solutions initially focused on centralised data lakes that reduced data duplication, simplified management and supported a variety of applications including customer 360 analysis. However, in 2016, large organisations will increasingly move to distributed processing for big data to address the challenges of managing multiple devices, multiple data centres, multiple global use cases and changing overseas data security rules (safe harbour). The continued growth of Internet of Things (IoT), cheap IoT sensors, fast networks, and edge processing will further dictate the deployment of distributed processing frameworks.
3. Storage (Particularly Flash) Becomes an Extremely Abundant Resource
Next-generation, software-based storage technology is enabling multi-temperature (fast and dense) solutions. Flash memory is a key technology that will enable new design for products in the consumer, computer and enterprise markets. Consumer demand for flash will continue to drive down its cost, and flash deployments in big data will begin to deploy. The optimal solution will combine flash and disk to support both fast and dense configurations. In 2016, this new generation of software-based storage that enables multi-temperature solutions will proliferate so organisations will not have to choose between fast and dense—they will be able to get both.
4. “Shiny Object Syndrome” Gives Way to Increased Focus on Fundamental Value
In 2016, the market will focus much less on the latest and greatest “shiny object” software downloads, and more on proven technologies that provide fundamental business value. New community innovations will continue to garner attention, but in 2016, companies will increasingly recognise the attraction of software that results in business impact, rather than focusing on raw big data technologies.
5. Markets Experience a Flight to Quality
In terms of big data technology companies, investors and organisations will turn away from volatile companies that have frequently pivoted in their business models. Instead, they will turn to focus on more secure options – those companies that have both a proven business model and technology innovations that enable improved business outcomes and operational efficiencies.
“An organisation’s competitive stance now relies on the ability to leverage data to drive business results,” said Schroeder. “MapR enables businesses with a converged data platform that supports the widest variety of data processing, analytics and applications.”